Maturation of a Recurrent Excitatory Neocortical Circuit by Experience-Dependent Unsilencing of Newly Formed Dendritic Spines

نویسندگان

  • Michael C. Ashby
  • John T.R. Isaac
چکیده

Local recurrent excitatory circuits are ubiquitous in neocortex, yet little is known about their development or architecture. Here we introduce a quantitative technique for efficient single-cell resolution circuit mapping using 2-photon (2P) glutamate uncaging and analyze experience-dependent neonatal development of the layer 4 barrel cortex local excitatory circuit. We show that sensory experience specifically drives a 3-fold increase in connectivity at postnatal day (P) 9, producing a highly recurrent network. A profound dendritic spinogenesis occurs concurrent with the connectivity increase, but this is not experience dependent. However, in experience-deprived cortex, a much greater proportion of spines lack postsynaptic AMPA receptors (AMPARs) and synaptic connectivity via NMDA receptors (NMDARs) is the same as in normally developing cortex. Thus we describe a approach for quantitative circuit mapping and show that sensory experience sculpts an intrinsically developing template network, which is based on NMDAR-only synapses, by driving AMPARs into newly formed silent spines.

منابع مشابه

The Arp2/3 Complex Is Essential for Distinct Stages of Spine Synapse Maturation, Including Synapse Unsilencing.

UNLABELLED Dendritic filopodia are actin-rich structures that are thought to contribute to early spine synapse formation; however, the actin regulatory proteins important for early synaptogenesis are poorly defined. Using organotypic hippocampal slice cultures and primary neuron hippocampal cultures from Arp2/3 conditional knock-out mice, we analyze the roles of the Arp2/3 complex, an actin reg...

متن کامل

Activity-dependent dendritic spine neck changes are correlated with synaptic strength.

Most excitatory inputs in the mammalian brain are made on dendritic spines, rather than on dendritic shafts. Spines compartmentalize calcium, and this biochemical isolation can underlie input-specific synaptic plasticity, providing a raison d'etre for spines. However, recent results indicate that the spine can experience a membrane potential different from that in the parent dendrite, as though...

متن کامل

The relationship between PSD-95 clustering and spine stability in vivo.

The appearance and disappearance of dendritic spines, accompanied by synapse formation and elimination may underlie the experience-dependent reorganization of cortical circuits. The exact temporal relationship between spine and synapse formation in vivo remains unclear, as does the extent to which synapse formation enhances the stability of newly formed spines and whether transient spines produ...

متن کامل

Multicontact Co-operativity in Spike-Timing-Dependent Structural Plasticity Stabilizes Networks.

Excitatory synaptic connections in the adult neocortex consist of multiple synaptic contacts, almost exclusively formed on dendritic spines. Changes of spine volume, a correlate of synaptic strength, can be tracked in vivo for weeks. Here, we present a combined model of structural and spike-timing-dependent plasticity that explains the multicontact configuration of synapses in adult neocortical...

متن کامل

Coordinated Spine Pruning and Maturation Mediated by Inter-Spine Competition for Cadherin/Catenin Complexes

Dendritic spines are postsynaptic compartments of excitatory synapses that undergo dynamic changes during development, including rapid spinogenesis in early postnatal life and significant pruning during adolescence. Spine pruning defects have been implicated in developmental neurological disorders such as autism, yet much remains to be uncovered regarding its molecular mechanism. Here, we show ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Neuron

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2011